The following information is required by the Undergraduate Studies Committee to approve new programs. After approval by UGSC this form should be routed to Faculty Council for approval and then the Provost's office.

College(s): College of Science
Department(s): College of Science
Date: Jan 20, 2017

Approvals Required

(1) Academic Unit Head(s):
(2) Dean(s):
(3) Undergraduate Studies Chair:

GENERAL INFORMATION

Program Title: Bioanalytical Chemistry

Program Scheduling: Fall 2017
Total Program Credit Hours: 127-128
Program Description: Provide a brief narrative of the program content (use as much space as needed).

Bioanalytical Chemistry is a study of modern techniques and chemical and biochemical methods for analysis of biomolecules and biologically active molecules. This program provides students with an interdisciplinary background in bioanalytical theories and methods and applications of analytical chemistry to detection, characterization, and quantification of biological systems. The program prepares majors with a rigorous background in the traditional chemistry areas and the requisite knowledge and technical skills to develop their competitive career paths in the field of bioanalysis, biomedical, chemical, and clinical science.

Program Purpose/Program Benefits: Provide details on the intent of the program and its relation to other programs. State the impact of the program for students and for IIT.

See the attached document for more detailed description on purpose, intent, and benefits of the program.

At Illinois Tech, the Chemistry Department provides a rigorous and high quality education in Chemistry. While the American Chemical Society (ACS)-approved chemistry programs at most other academic institutions require 120 credits, Illinois Tech Chemistry requires more credits (127128 total, 58 chemistry credits) for the same degree. Although the higher credit requirement is beneficial for student education, it also makes IIT chemistry program the least affordable in the Chicago area and has a negative impact on our enrollment. For example, in Fall 2016, there were 27 chemistry majors at IIT vs 440 majors in the chemistry department at Loyola University Chicago. Many chemistry departments at US academic institutions offer diverse BS degree programs in addition to the traditional BS degree in Chemistry. They have crafted specialized and area-focused BS programs with a good overlap in curriculum. For instance, the department of chemistry at University of South Florida offers three medical-related BS degree programs, and one of the programs, BS in Biomedical Science has an unusually high undergraduate enrollment (> 3,000 majors).

The IIT BS Chemistry program requires students to complete 6 elective courses (18 credits total). We propose to create new chemistry programs that use the available credits to train chemistry majors in a specialized area. In the new programs, students will be trained as viable candidates with good entry-level skills for the job market and for entrance to graduate programs, including medical and pharmacy school. Students will have learning opportunities to gain various hands-on techniques by taking the lab courses customized for industrial need in addition to the standard lecture-based courses. The students are expected to develop good basic understanding of the subject matter and sound knowledge of chemical applications to the specialized fields. This indepth and crafted training approach will benefit students in the specialized programs with requisite educational background to develop their competitive career paths.
We first identified the core areas for creation of new BS programs with emphasis on Bio, Medicine, Data, Analytics, Environment, and Safety. We then selected the new programs based on our review of various factors: i) Unique BS degree programs, at least in the Chicago area; ii) Major areas attractive to high school and undergraduate students; iii) Specialized degrees in high demand from industry; iv) Undergraduate programs with high growth and enrollment at peer institutions; v) Affordable programs that can be taught and designed by Illinois Tech Chemistry faculty; vi) Curriculum in good overlap for area-focused multi-degree programs.
We now propose the new BS degree programs in Bioanalytical Chemistry, Environmental Chemistry, Forensic Chemistry, Medicinal Chemistry, and Computational Chemistry and Biochemistry. The highly area-focused, diverse, affordable, and marketable programs and are to increase the quality and distinctiveness of Illinois Tech education and make expected to make a significant impact on undergraduate enrollment.
The Bioanalytical Chemistry degree is proposed as one of the new Area-Focused programs. The curriculum is designed to prepare majors with a solid background in chemical science and a practical training in Bioanalytical Chemistry. The Bioanalytical Chemistry program is unique, marketable, and attractive to high school and undergraduate students. Illinois Tech will be the first institution to offer the Bioanalytical Chemistry program in the nation.

Classification of Instructional Programs (CIP):

The IIT BS in Bioanalytical Chemistry is a brand new UG program. There is no existing CIP code for the new program. However, analytical chemistry can be linked to the new program; bioanalytical chemistry is a sub-discipline of analytical chemistry but focused on analysis of biologically active molecules.
40.0502: Analytical Chemistry

Required to make the program US Financial Aid Eligible - The CIP code takes the following structure: xx.xxxx Where each x is a number between 0 and 9 . This 6 -digit code identifies, to the greatest specificity possible, an entire instructional program. The classification scheme seeks to comprehensively address all areas of study. Because of the dynamic nature of education, however, new CIP codes are frequently added to the list. The first 2-digits are the first cut off of detail and describe the general discipline of the program. For example, any program with a CIP that starts with 14 is within the Engineering discipline; anything with a 22 is within the legal discipline. The next 2 digits increase the level of detail, and the final 2-digits provide the highest level of detail.
Find CIP codes at http://nces.ed.gov/ipeds/cipcode

PROGRAM VIABILITY

Competitive Programs: Indicate other similar programs locally and nationally detail their success.
At this time, no peer institution in USA offers a BS in Bioanalytical Chemistry. Illinois Tech will be the first institution to offer the Bioanalytical Chemistry program in the Nation. We are well prepared and are excited to launch this signature program and train undergraduates with a strong chemistry background and the requisite knowledge and analytical and biochemical lab skills to place and advance their careers in the expanding chemical and life science field.

Market Analysis for Recruiting Students: Detail what work has been done with UG Admissions to identify and recruit potential students.

Illinois Tech UG admission office recently reported that "Among our domestic applications, 67 percent are from Illinois, and about half of these are from Chicago." The Chemistry UG recruiting committee will closely work with the Dean's office in College of Science on the advertisement of new chemistry programs and generate an attractive web link and informative program brochure to recruit prospective students in the greater Chicago Area. An immediate target group will be the students (23 admits, Fall 2017) who have been admitted to the Chemistry program this fall. The chemistry department will work with the UG admission office in an effort to communicate with the target students and public and private local high schools (~ 400 in the Cook County alone). The chemistry department will also seek opportunities to meet and recruit transfer undergraduates from a number of community colleges, particularly in the greater Chicago area.

Market Analysis for Graduates: Detail what work has been done with the Career Management Center to identify potential employment opportunities for graduates.
Industrial demand for bioanalytical and analytical chemists remains very high. Particularly, R\&D analytical and bioanalytical chemists and technicians for analytical method development and quality control and quality analysis (QC/QA) are in a growing demand. A brief job search in Linkedln using the key words "bioanalytical chemist" also indicate the high employment demand in bioanalytical chemistry: Chemist (1,821 jobs) and Bioanalytical Chemist (396 jobs, 21.7\% of total chemist jobs), January 10, 2017.
Students in the new program will be trained to work at bioanalytical chemistry-related labs including QA/QC lab, Instrument lab for method development of separation of pharmaceuticals and agrochemicals, LC/MS Chromatographic method development lab, biologic process development lab, GMP and GLP quality lab, bioanalytical chemistry lab, pharmacokinetics and pharmacodynamics lab. Students will be qualified to apply for various lab positions in major and local Pharma, research institutes, Clinics, Biotech, Industry, and Federal and State government. There are over 200 biotech and pharmaceutical and life science companies in the Chicago area.

ACADEMIC INFORMATION

Enrollment Estimates: Are there enrollment estimates for this program, and if so, what are they and what are they based on? What is the minimum number of students necessary in the program to make the program viable (i.e.to offer classes unique to the program often enough)?

We anticipate at least 5 students will be admitted to the program by Fall 2018 and 20 students by Fall 2021. IIT Chemistry has suffered a long-lasting problem of low enrollment (27 majors, Fall 2016). The proposed goal will lead to a significant increase in Chemistry UG enrollment. Students in the new program are scheduled to take the courses required for completion of the BS degree during their $3^{\text {rd }}$ or $4^{\text {th }}$ years in the program. Enrollment of 5 students in the new program per academic year is required to offer 2 new courses every year.

Advising Strategy: Since quality advising is a key component of good retention, graduation and career placement, how will students be advised and mentored? Specifically for interdisciplinary programs, how will advising responsibilities be shared? What student professional organizations will be formed? How will the department work with the Career Management Center to develop industry connections?

Students in the new program will be advised by the chemistry faculty who are specialized in the area of Bioanalytical Chemistry (Prof. Joy Chong, Richard Guan, and Rong Wang). Students will be encouraged to gain research experience and professional development in the specialized area working at the research labs of the chemistry faculty. Students in the new program are required to take a seminar course and will be able to communicate with other students in the specialized programs for possible joint extracurricular activities. They will be advised to seek internship opportunities in local pharma and biotech and life science companies in the Chicago area. The
chemistry faculty in collaboration with the IIT CMC will also develop a strategy for building relationships with local pharma and industries.

Course Requirements: Detail the courses needed for the program including courses currently offered, new courses to be developed (including syllabi), and dependence on courses from other academic units with their commitments to provide these courses on a long-range basis. Include descriptions of laboratories that will need to be developed along with equipment and facilities requirements.

The majority of the required courses for the program have been regularly offered for BS Chemistry majors by the Chemistry Department. Students in the new program are expected to complete the ACS-approved BS chemistry degree requirement and take additional required courses (16 credits total) to earn the specialized degree (ACS-accredited BS in Bioanalytical Chemistry) as outlined below.
Two lab-based courses (Bioanalytical Chemistry Lab, CHEM 4B2 and Analytical Method Development Lab, CHEM 4B3) are required for the Bioanalytical Chemistry degree scheduled for offering in Fall 2020 or Spring 2021. With sufficient lead time, we will be able to generate a lab curriculum and be ready for teaching the lab courses in our teaching labs. Illinois Tech Chemistry Department operates first-class teaching labs that are equipped with modern instrument and excellent supporting systems.

Bioanalytical Chemistry (CHEM 4B1, 3 credits)

This course will provide an introduction to analysis of biomolecules and biologically active molecules and cover analytical and spectroscopic methods for characterization, separation, and detection of biomolecules and biologically active complex and small molecules. Students will learn chemical, biochemical, biophysical, chromatographic, electrochemical, and instrumental techniques for qualitative and quantitative analysis and characterization of biomolecules, bioconjugates, biosimilars, and biopharmaceuticals including protein, antibodies, nucleic acid, enzymes. The following topics will be included in the course: spectroscopy, mass spectrometry, chromatography, acid-base chemistry, chemical kinetics and thermodynamics, electrochemistry, biomolecular structure, bioconjugate chemistry, and protein and nucleic acid analysis.

Bioanalytical Chemistry Laboratory (CHEM 4B2, 3 credits)

A laboratory course of bioanalytical chemistry. Students will learn basic analytical and spectroscopic lab techniques for separation, characterization, and detection of biomolecular systems. Students will gain hands-on lab experience in the biochemical assays, microscopic, biophysical, and instrumental analysis of biomolecules, biopharmaceuticals, biosimilars, and biologically active complex and small molecules. The selected topics include analytical and semiprep and size-exclusion high performance liquid chromatography (HPLC), UV-Visible spectroscopy, Fluorescence spectroscopy, Infrared and Raman spectroscopy, Surface-Enhanced Raman Spectroscopy (SERS), Atomic force microscopy (AFM), Protein and Nucleic acid analysis, Peptide sequencing, PCR, electrochemistry, electrophoresis, chromatography, centrifugation, and microdialysis.

Analytical method development Lab (CHEM 4B3, 3 credits)

In this lab-focused course, students will learn about method development and assessment for analysis of chemicals, polymers, drugs, and biologics. Students will gain hands-on experience in quantitative analysis and quality assurance and control of chemicals and biologics. The literature and guidance on analytical method development and validation reported by the industry and government agencies will be studied. This course will foster students to develop quantitative and technical analysis, literature comprehension, critical thinking, problem-solving, and communication skills. The selected topics for the course include analytical separation, instrumental analysis, chromatographic and electrophoretic methods, statistical analysis, quality assurance and control, analytical method validation, sampling, preparations and storage of samples and standard solutions, physiochemical characterization, good laboratory practice (GLP) requirement, and validation, verification, documentation of analytical testing methods and procedure.

Seminar in Special Topics (CHEM 495, 1 credit)
This seminar course will provide students with opportunities to learn about recent development in the specialized research fields. Students are expected to develop written and oral communication skills on the advanced and specialized topics.

Bioanalytical Elective courses (Select 2 courses, 6 credits): Medicinal Chemistry (CHEM 4M1), Forensic Chemistry (CHEM 4F1), Forensic Chemistry Lab (CHEM 4F2), ChemInformatics (CHEM 4C2), Environmental Analytical Chemistry (CHEM 4E2), Statistics for Analytical Chemists (Chem513), Analytical Method Development (Chem508), Physical Biochemistry (Chem538), ${ }^{+++}$Inorganic Chemistry Lab (CHEM416). ${ }^{+++}$Required for ACS-Accredited BS degree.

Sample Curriculum/Program Requirements: Provide a sample semester by semester curriculum and the program requirements, as they would appear in the IIT Undergraduate Programs bulletin.

Attached

Program Outcomes and Assessment Process: Provide the program learning goals and assessment plan (for more information contact the Assessment Office within Academic Affairs). Also see https://sites.google.com/a/iit.edu/student-learning-assessment/

Attached

Semester 1		Credits
CHEM 124	General Chemistry I	4
CS 105 or	Intro to Programming	2
CS110	Computing Principles	
MATH 151	Calculus I	5
Humanities-200 level course		3
		14
Semester 2		
CHEM 100	Introduction to Profession	2
CHEM 125	General Chemistry II	4
MATH 152	Calculus II	5
PHYS 123	General Physics I	4
Social Sciences Elective		3
		18
Semester 3		
CHEM 237	Organic Chemistry I	4
BIOL 107 or	General Biology Lectures	3
BIOL 115	Human Biology	
MATH 251	Multivariate and Vector Calculus	4
PHYS 221	General Physics II	4
Humanities or Social Sciences Elective		3
		18
Semester 4		
CHEM 239	Organic Chemistry II	3
CHEM 240	Organic Chemistry Lab	2
CHEM 247	Analytical Chemistry	3
MATH 252	Introduction to Differential Equation	4
Humanities Elective (300+)		3
		15
Semester 5		
CHEM 321	Instrumental Analysis	4
CHEM 343	Physical Chemistry I	3
IPRO Elective I		3
Free Elective ${ }^{2}$		3
Social Sciences Elective (300+)		3
		16
Semester 6		
CHEM 344	Physical Chemistry II	4
CHEM 434	Spectroscopic Methods	4
CHEM 485	Chemistry Colloquium	1
CHEM 4B1	Bioanalytical Chemistry	3
Humanities Elective (300+)		3
		15
Semester 7		
CHEM 415	Inorganic Chemistry	3
BIOL 401	Introduction to Biochemistry	4
OR		
BIOL 403	Biochemistry	3
CHEM 4B2	Bioanalytical Chemistry Lab	3
CHEM 4B3	Analytical Method Development Lab	3
Free Elective ${ }^{2}$		3

Bioanalytical Chemistry Elective ${ }^{1}$ 3
Bioanalytical Chemistry Elective ${ }^{1} \quad 3$
CHEM $495 \quad$ Seminar in Special Topics 1
IPRO Elective II 3
Free Elective ${ }^{2}$ 3
Social Sciences Elective (300+) 3
Total Credit Hours 127-128
${ }^{1}$ Bioanalytical Chemistry Electives (Select at least 2 courses, 6 credits):
CHEM 4C2 ChemInformatics
CHEM 4M1 Medicinal Chemistry
CHEM 4F1 Forensic Chemistry
CHEM 4F2 Forensic Chemistry Lab
CHEM 4E2 Environmental Analytical Chemistry
CHEM 513 Statistics for Analytical Chemists
CHEM 538 Physical Biochemistry
CHEM 416 Inorganic Chemistry Lab (Required for ACS-Accredited BS Degree)
${ }^{2}$ Free Electives (Suggested, Select 3 courses, 9 credits):
BIOL 210 Microbiology
BIOL 445 Cell Biology
BIOL 514 Toxicology
BIOL 527 Immunology and Immunochemistry
BIOL 550 Bioinformatics
ITMD 421 Data Modeling and Applications
ITMD 527 Data Analytics
Bioanalytical Chemistry Requirements 57
CHEM100, 124, 125, 237, 239, 240, 247, 321, 343, 344, 415, 434, 485 41
CHEM 4B1 Bioanalytical Chemistry 3
CHEM 4B2 Bioanalytical Chemistry Lab 3
CHEM 4B3 Analytical Method Development Lab 3
CHEM 495 Seminar In Special Topics 1
Bioanalytical Chemistry Electives 6
Biology Requirements 6-7
BIOL107 or 115 , BIOL 401 or 403
Mathematics Requirements 18
MATH 151, 152, 251, 252
Physics Requirements 8
PHYS 123, 221
Computer Science Requirements 2
CS 105 or 110
Humanities and Social Sciences Requirements 21
Interprofessional Projects (IPRO) 6
Free Electives 9

Learning Assessment Plan (BS in Bioanalytical Chemistry)

Learning Goals What should students be able to do after success-fully completing the program?	Measures What class work and assignments will be used to assess whether the student has achieved the goal?	Schedule When, how often and by whom will data be collected?	Rubrics \& Evaluation How will you determine how well your students have learned this?	Standards What benchmarks will be used to interpret your results?	Improvement How will you use your assessment results to improve the program?
1. Majors will Understand fundamental chemical concepts and possess basic chemistry lab skills.	Course evaluation Homework, Quiz, and Exam questions, and Lab reports	Data will be collected every semester or every year	Evaluation criteria and scoring rubrics for homework, quiz, and exam questions will be developed. Student performance on each evaluation criterion will be reviewed and analyzed. l	Refer to information on evaluation of the same program in peer institutions. Department's course evaluation result	Review assessment result and revise curriculum and evaluation and teaching methods and collect feedback from other chemistry faculty and the department chair.
2. Majors will develop a solid theoretical and experimental background in the traditional chemistry areas by completing the required foundation and/or indepth course works.	Course evaluation Homework, Quiz, and Exam questions, and Lab reports	Data will be collected every semester or every year	Evaluation criteria and scoring rubrics for homework, quiz, and exam questions will be developed. Student performance on each evaluation criterion will be reviewed and analyzed. Elation	Refer to information on evaluation of the same program in peer institutions. Department's course evaluation result	Review assessment result and revise curriculum and evaluation and teaching methods and collect feedback from other chemistry faculty and the department chair.
3. Majors will acquire a fundamental knowledge of theoretical concepts in bioanalytical chemistry and bioanalysis.	Course evaluation Homework, Quiz, and Exam questions	Data will be collected every semester or every year	Evaluation criteria and scoring rubrics for homework, quiz, and exam questions will be developed. Student performance on each evaluation criterion will be reviewed and analyzed. and	Refer to information on evaluation of the same program in peer institutions. Department's course evaluation result	Review assessment result and revise curriculum and evaluation and teaching methods and collect feedback from other chemistry faculty and the department chair.
4. Majors will master basic analytical and spectroscopic lab techniques for separation, characterization, and detection of small molecules and/or biomolecules	Course evaluation Homework, Quiz, and Exam questions	Data will be collected every semester or every year	Evaluation criteria and scoring rubrics for homework, quiz, and exam questions and will be developed. Student performance on each evaluation criterion will be reviewed and analyzed.	Refer to information on evaluation of the same program in peer institutions. Department's course evaluation result	Review assessment result and revise curriculum and evaluation and teaching methods and collect feedback from other chemistry faculty and the department chair.

5. Majors will understand and apply theoretical concepts for analysis and interpretation of chemical and spectroscopic data.	Course evaluation Homework, Quiz, and Exam questions	Data will be collected every semester or every year	Evaluation criteria and scoring rubrics for homework, quiz, and exam questions and will be developed. Student performance on each evaluation criterion will be reviewed and analyzed. l	$\begin{array}{lr}\text { Refer } & \text { to } \\ \text { information } & \text { on }\end{array}$ evaluation of the same program in peer institutions. Department's course evaluation result.	Review assessment result and revise curriculum and evaluation and teaching methods and collect feedback from other chemistry faculty and the department chair.
6. Majors will develop a solid laboratory skills in chemical and instrumental analysis of small molecules, large biomolecules, or complex mixtures.	Course evaluation Homework, Quiz, and Exam questions, and Lab reports	Data will be collected every semester or every year	Evaluation criteria and scoring rubrics for presentations and reports. Student performance on each evaluation criterion will be reviewed and analyzed.	Refer to information on evaluation of the same program in peer institutions. Department's course evaluation result	Review assessment result and revise curriculum and evaluation and teaching methods and collect feedback from other chemistry faculty and the department chair.
7. Majors will develop a sound theoretical and experimental background in chemical applications for analysis of biomolecules and biologically active molecules.	Course evaluation Homework, Quiz, and Exam questions, and Lab reports	Data will be collected every semester or every year	Evaluation criteria and scoringrubrics for presentations and reports. Student performance on each evaluation criterion will be reviewed and analyzed.	Refer to information on evaluation of the same program in peer institutions. Department's course evaluation result	Review assessment result and revise curriculum and evaluation and teaching methods and collect feedback from other chemistry faculty and the department chair.
8. Majors \quad will demonstrate competence and efficiency in searching literature and database systems related to chemistry and bioanalytical chemsitry areas.	Course evaluation Homework, Quiz, and Exam questions, and Lab reports	Data will be collected every semester or every year	Evaluation criteria and scoring rubrics for presentations and reports. Student performance on each evaluation criterion will be reviewed and analyzed.	Refer to information on evaluation of the same program in peer institutions. Department's course evaluation result	Review assessment result and revise curriculum and evaluation and teaching methods and collect feedback from other chemistry faculty and the department chair.
9. Majors will comprehend fundamental concepts described in research articles and demonstrate their understanding of the subject matter in the format of technical report and oral presentation.	Course evaluation Oral presentation in undergraduate seminar and chemical literature search Written reports and technical summary of research presentations, laboratory reports	Data will be collected every semester or every year	Evaluation criteria and scoring rubrics for presentations and reports. Student performance on each evaluation criterion will be reviewed and analyzed.	Refer to information on evaluation of the same program in peer institutions. Department's course evaluation result	Review assessment result and revise curriculum and evaluation and teaching methods and collect feedback from other chemistry faculty and the department chair.

Curriculum Map (BS in Bioanalytical Chemistry)

Learning Goals	Introduction and foundation Course Work	In-Depth Course Work	Elective Courses for In-Depth Course Work
1	124, 125		
2	237, 247, 343, 401 or 403, 415	$\begin{aligned} & 239,240,321,434, \\ & 344 \end{aligned}$	
3	237, 247, 401 or 403	$\begin{aligned} & \text { 239, 240, 321, 434, } \\ & \text { 4B1, 4B2 } \end{aligned}$	4E2, 4F1, 4M1, 538, Free electives
4	237, 247, 401 or 403	240, 321, 434, 4B3	$500,513,4 \mathrm{E} 2,4 \mathrm{~F} 2$ Free electives
5	237, 247	239, 434, 4B3	500, 513
6	237, 247	321, 434, 4B2, 4B3	4E2, 4F2
7	237, 247, 401 or 403	$\begin{aligned} & \text { 239, 240, 434, 4B1, } \\ & \text { 4B2, 4B3 } \end{aligned}$	$\begin{aligned} & \text { 500, } 513,538,4 F 1, \\ & 4 F 2,4 \mathrm{E} 2 \\ & \text { Free electives } \end{aligned}$
8	237, 240, 247, 321, 434	$\begin{aligned} & 4 \mathrm{~B} 1,4 \mathrm{~B} 2,4 \mathrm{~B} 3,485, \\ & 495 \end{aligned}$	4C2, Free electives
9	237, 240, 247, 321, 434	$\begin{aligned} & \text { 4B1, 4B2, 4B3, 485, } \\ & 495 \end{aligned}$	Free electives

