From: Registrar Support registrar@iit.edu Subject: Course Add/Change/Delete Request [#1478]: BME 325 ISSUE=76999 PROJ=17 Date: July 21, 2016 at 2:21 PM

To: jgeorgia@iit.edu

io: jyeoryia@iii.eo

When replying, type your text above this line.

Notification of Incident Change

Incident Number: 76999

Status:Customer Response Creation Date: 07/20/2016

Description:

Entered on 07/21/2016 at 2:20:13 PM CDT (GMT-0500) by jgeorgia@iit.edu: I approve the new course BME 325

Thanks,

JG

>

John G. Georgiadis, PhD R. A. Pritzker Professor and Chairman of Biomedical Engineering Dept. Illinois Institute of Technology 3255 S. Dearborn St., Wishnick Hall 314, Chicago, IL 60616 USA phone +1 312 567-5790 | fax +1 312 567 5770 | jgeorgia@iit.edu <mailto:jgeorgia@iit.edu> profile http://engineering.iit.edu/faculty/john-georgiadis>

> On Jul 21, 2016, at 10:41 AM, Registrar Support <registrar@iit.edu> wrote:

> [Duplicate message snipped]

Entered on 07/21/2016 at 10:41:06 AM CDT (GMT-0500) by Aubrey Hall: Hello.

See below for a course form requiring your approval.

Sincerely,

Aubrey Hall Associate Registrar Office of the Registrar

Entered on 07/20/2016 at 5:28:17 PM CDT (GMT-0500) by mogul@iit.edu: Requestor's Name: David Mogul

Requestor's IIT Email Address: mogul@iit.edu

Type of Request: New Course

Is course for academic credits or for continuing education units (CEUs)?: Credit

Effective Term: Spring 2017

College: AC - Armour College of Engineering

Department: BMED - Biomedical Engineering

Subject Code: BME - Biomedical Engineering

Course Number: 325

Course Title: Bioelectronics Laboratory

Course Level: Undergraduate

Grading Basis: Standard Letter

Schedule Type: Lab

Armour College Engineering Themes:

RS

- Health

Contact Hours - Lecture: 0

Contact Hours - Lab: 3

Contact Hours - Other: 0

Total Credits or CEUs: 1

Prerequisites, Corequisites, and Concurrent Prerequisites (optional): BME 315 Prerequisite

Additional Registration Restrictions (optional): Open only to Biomedical Engineering majors.

Course Description:

Practical hands on design, construction and testing of electric and electronic circuitry for biomedical applications. Basic concepts will be presented with emphasis on their relevance to the design of systems that can be used for clinical and basic scientific research.

Course Purpose/Reason for Change:

This course is designed to be taken by junior status BME undergraduates in the Neural Engineering and Medical Imaging tracks. Students in the Cell & Tissue Engineering track will take BME 320 instead.

Upload Syllabus: Bioelectronics Lab Course Outline - BME325 - 2016.doc

CC(s): (permanent) jgeorgia@iit.edu

Contact Information:

Email Address:	<u>mogul@iit.edu</u>	Last Name:	Mogul
First Name:	David	Phone:	3125673873
Fax:	3125675770	Department: PRI	
Building:	WH	Room:	206
IIT Classification	:Faculty/Staff	U-ID:	mogul
Student Level:	Professor	CWID:	20002462

Attachments: Bioelectronics Lab Course Outline - BME325 - 2016.doc

BME 325 - Biolectronics Lab

Spring, 2016

Time:TBAProfessor:David Mogul, Ph.D.Office Hours:TBAPhone:7-3873 (office)Email:mogul@iit.edu

<u>Course Description</u>: Practical hands on design, construction and testing of electric and electronic circuitry for biomedical applications. Basic concepts will be presented with emphasis on their relevance to the design of systems that can be used for clinical and basic scientific research.

1)		Circuits	4 weeks	
a)		Amplifiers		
		i) Transistor amplifiers		
		ii) Operational amplifiers		
	b)	Filters (Passive & Active)		
		i) Low pass filter		
		ii) High pass filters		
		iii) Bandpass		
		iv) 60Hz Notch filters		
	c)	Optical isolation and electronic safety		
	d)	Bioamplification		
		i) ECG amplifier		
		ii) Audio Amplifier		
2)		Motor Control and Other Effectors/Outputs	3 weeks	
,	a)	Open-loop control		
b)		Closed-loop control		
		Speed vs. Position Control		
		Light Control		
3)		Sensors and Input of Data	3 weeks	
5)	a)	Arduino vs. Gertboard	5 WEEKS	
		Sensor Input		
		Video & Sound Input		
	•)			
4)		Design of Total Computationally-Controlled Systems	4 weeks	
	a)	Raspberry Pi programming (Python)		
	b)	Multiplexing Input/Output		
		Networking and Interfacing to the Internet		
	d)	Data Reporting, Alarms,		

Evaluation: Grades will be based on homeworks (20%), lab reports (60%), and final examination (20%).