

Spring 2022 Core Curriculum Assessment Report

This report should be a collaborative effort involving the CCAC, the applicable subcommittee of the CCAC, the faculty teaching the applicable courses, and the UGSC.	Core Curriculum Requirement: Computer Science		
	Responsible Party: Core Curriculum Assessment Committee		
	CS subcommittee of the CCAC: Matthew Bauer, Yuri Mansury,		
	Ray Trygstad, Fred Weening		
	Final Approval: Undergraduate Studies Committee (UGSC)		

CORE CURRICULUM LEARNING GOALS/OUTCOMES EVALUATED IN THIS ASSESSMENT CYCLE: List the core curriculum learning goals/outcomes that were evaluated in this assessment cycle.

Applicable Core Curriculum Learning Goal:

Think critically, viewing problems as opportunities for innovation, able to

- Appropriately employ multiple quantitative and qualitative methods of analysis and evaluation.
- Employ the best available technology to achieve solutions.

Computing Learning Outcomes:

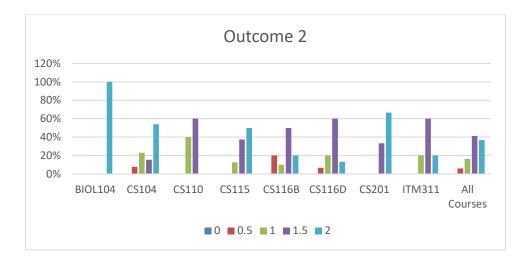
1. use computation to represent problems (i.e. abstraction) and implement solutions using an appropriate programming environment.

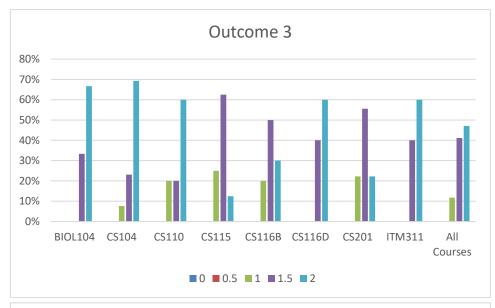
2. use computation to demonstrate algorithmic thinking.

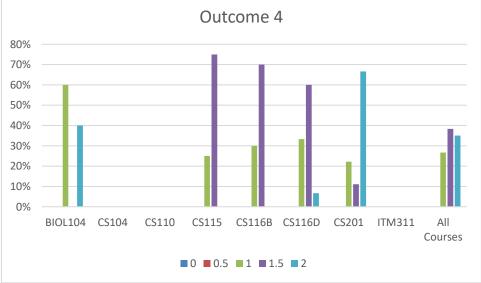
- 3. utilize computational applications for modeling, simulation or visualization.
- 4. explain the limitations, assumptions, and trade-offs inherent in computing models.
- 5. apply a software development process (specification/requirements, design,

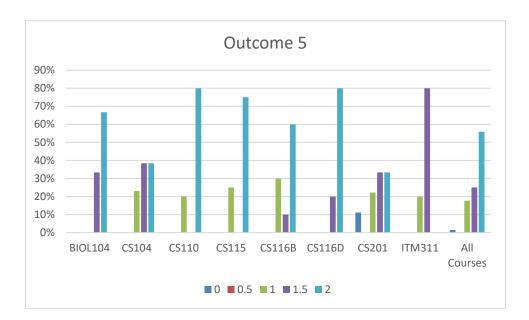
programming/documentation, debugging/testing).

2. ASSESSMENT METHODOLOGY: Use the table below to describe your assessment methodology. Do not simply reference the assessment plan for this program. *Copy the table for each learning goal assessed in the last academic year.*


First Learning Goal			
Learning Goal Assessed	All learning outcomes assessed with the same methodology		
Sample size	Random subset of students enrolled in the course		
Semester(s) in which artifacts were collected	Spring 2022		
Name of rubric used to evaluate student artifacts	Assessing student artifacts matching each learning outcome on a (0, 0.5, 1, 1.5, 2) point scale. 1.5 and above is satisfactory. Depending on the type of student artifact, a different assessment rubric is used.		


multiple choice					
	\circ 2.0 - 85% or higher on the questions matchin				
	the outcome	······································			
	• 1.5 - 70% to 8	% on the questions matching the			
	outcome				
	\circ 1.0 - 55% to 6	9% on the questions matching the			
	outcome				
	\circ 0.5 - 40% to 59% on the questions matching				
	outcome				
	• 0.0 - below 40% on the questions matching the outcome				
	outcome				
	 multiple choice with partial credit for explanations, or short answer or coding 				
	\circ 2.0 - demonstrates strong achievement of				
	outcome				
	\circ 1.5 - demonstr	ates achievement of outcome			
	• 1.0 - achievement of outcome not demonstr				
	to a satisfactory level				
	\circ 0.0 - no answer				
	lab assignment or project				
	\circ 2.0 - 90% or higher or A				
	• 1.5 - 70 to 89% or B/C				
	 1.0 - 55% to 69% or D 0.0 - below 55% or E 				
	0 0.0 - Delow 35% OF E				
	Threshold: 70% of a random student sample tested within a one				
	year window should achieve 1.5 points or greater (on a 0-2 point				
	scale).				
	Course(s) and Instructor(s):	Assignment(s):			
	BIOL104 Pombert	See <u>CSCoreAssessmentS22.xlsx</u>			
	CS104 Hanrath				
	CS110 Bauer				
Artifact source	CS115 Hanrath CS116 Bauer				
Artifact source	CS116 Dzikowski				
	CS201 Boliske				
	ARCH125 not taught in S22				
	Other (specify):				
Month/Year of	May 2022				
Assessment/Evaluation	1viay 2022				
Names & Titles of the evaluators	Matthew Bauer, Senior Lecturer				


3. ASSESSMENT RESULTS: Insert a table or graph summarizing the results. Results should be presented by a performance indicator for each learning goal. If the data were collected in Blackboard Outcomes, the IIT Assessment Office will provide the information to insert into this section of the report (see samples below).


	r	r			r			r	
Threshold: 70% of a random									
student sample tested should									
achieve 1.5 points or greater									
(on a 0-2 point scale).									All
(Students sample size/course	BIOL104	CS104	CS110	CS115	CS116B	CS116D	CS201	ITM311	Courses
enrollment)	(5/3)	(68/13)	(20/5)	(42/8)	(42/10)	(46/15)	(30/ 10)	(39/5)	(292/69)
1. use computation to represent									
problems (i.e. abstraction) and									
implement solutions using an									
appropriate programming									
environment.	100%	69%	100%	75%	90%	93%	90%	100%	88%
2. use computation to									
demonstrate algorithmic									
thinking.	100%	69%	60%	88%	70%	73%	90%	80%	78%
3. utilize computational									
applications for modeling,									
simulation or visualization.	100%	92%	80%	75%	80%	100%	70%	80%	88%
4. explain the limitations,									
assumptions, and trade-offs									
inherent in computing models.		92%	40%	75%	70%	67%	70%		73%
5. apply a software									
development process									
(specification/requirements,									
design,									
programming/documentation,									
debugging/testing).	100%	77%	80%	75%	70%	100%	60%	80%	81%
	200/0		00/0	,,,,,	,,,,,	100/0	00,0	00/0	01/0

4. **DISCUSSION OF RESULTS:** Use this section to describe the key findings and program performance issues revealed in the interpretation of the data. *The evaluators should provide input into this section of the report.*

Considering all courses together, all outcomes passed the 70% assessment threshold.

Considering individual courses. Courses/Outcomes not passing the 70% assessment threshold: Outcome 1

• CS104 (69%) – borderline, just note to instructors needed

Outcome 2

• CS104 (69%) – borderline, just note to instructors needed

Outcome 3 – 70% threshold exceeded in all courses

Outcome 4 – This outcome is already undergoing review by the CS dept for possible removal and replacement with a less CS specific outcome on data/analysis. The discussion is centered around the question if non-CS majors need an understanding of computational limitations that CS majors receive (rounding and growth in runtime).

- CS110 (40%)
- BIOL104 and ITM311 had no assignments in support of this outcome

Outcome 5

• CS201 (60%) – Student performance on the capstone project in CS201 was affected by the adjunct faculty not being available the last 4 weeks of the term due to a job change. TA assistance was not sufficient for all students to succeed. The issue was not a content

of the course issue. CS dept is aware they have to do a better job in supporting students if an instructor becomes unavailable.

Discussion of Assessment Distribution

- Outcome 1 distribution was fine across all courses
- Outcome 2 distribution was fine across all courses except CS116, which was skewed lower, just note to instructors needed.
- Outcome 3 distribution was fine across all courses
- Outcome 4 is being revisited for possible replacement, as mentioned above
- Outcome 5 distribution was fine across all courses

5. **IMPROVEMENT PLANS:** Use this section to provide specific information about what elements of the curriculum may need to be modified in order to improve the program's performance. *This section should be completed and signed by the UGAA Chair.*

Specific modification to courses or assignments or curriculum.	Name and title of person responsible for implementing the changes.	Date by which changes will be in place.	Intended result
Outcome 4 review/replacement	UGCS in consultation with CS dept, Matthew Bauer, Senior Lecturer	Fall 2023	More broadly applicable data science related outcome that supports IIT and College of Computing mission.
Review CS core LOs, in particular LO4, but all LOs as well, to determine if these specific LOs are appropriate as core IIT LOs (i.e. not more appropriate as program LOs)	UGSC, in consultation with disciplinary experts in relevant AUs	Next CS assessment cycle, 2025 at earliest	A set of LOs that the IIT faculty support and are offered implemented in all CS designated classes

UGAA Approval:

UGAA Chair Name

Signature

Date

ASSESSMENT PROCESS RECOMMENDATIONS: Use this section to provide feedback on the assessment process itself.

Minimum sample size should be around 10 to get a better idea on student achievement of outcomes.

The next computer science core curriculum assessment should be done in a Fall term so ARCH125 and CS105 can be included.

Discuss in detail with each instructors at least 2-3 months before the assessment term the LOs expected, and outcomes that will be assessed. Have instructors document which student artifacts (assignments) will be used for assessment. Also discuss the rubric that will be used for each artifact.